Tables from Chapter 4:

"Optical properties and electronic structure of wide band gap II-VI semiconductors" by

I. Hernández-Calderón

in

II-VI Semiconductor Materials and their Applications,

Edited by Maria C. Tamargo, Taylor and Francis New York, 113–170 (2002).

Volume 12 of Optoelectronic Properties of Semiconductors and Superlattices Series M.O. Manasreh, Series Editor

TABLE LIST:

Table 1. Crystal structural properties.

Table 2. Varshni Parameters for the modeling of Eg(T)

 Table 3. Parameters for the modeling of Eg(T) following VLC

Table 4. Parameters for the modeling of Eg(T) following OC

Table 5. Data collection of the band gap of zincblende wide band gap II-VI semiconductors.

Table 6. E_A transitions of wurzite wide band gap II-VI semiconductors.

Table 7. Reference values for the lattice constant (a, c), E_0 and Δ_0 values for wide band gap II-VI semiconductors. E_A (= E_0), E_B , and E_C refer to wurzite crystals.

 Table 8. Elastic stiffness constants and deformation potential of zincblende II-VI wide band gap semiconductors.

Table 9. Calculated values for the shift of optical transitions at Γ of pseudomorphic heterostructures of II-VI semiconductors on GaAs(100).

Table 10. Bowing parameters for $E_g(x)$ of II-VI wide band gap ternary zincblende alloys.

Table 11. Experimental free exciton binding (E_1) and PL (X) transition energies, and calculated binding energies and modified Bohr radius of wide band gap II-VI semiconductors at the Γ point.

Table 12. Bound exciton binding energies and their optical transitions in zincblende wide band gap II-VI semiconductors.

 Table 13. Donor excitation energies in ZnSe

Notes:

- 1. This document is only for internal use of the NanoSem Laboratory at the Physics Department of Cinvestav.
- 2. The references were removed to avoid problems with the compilation of the document file, they can be found in the cited book.

	Zincl	olende			Wurzite		
Space group:	$T_{d}^{2} -$	$F\overline{4}3m$		C	$C_{6v}^4 - P6_3 m$	пс	
Compound	a	d	а	С	c/a	γ	d
BeS	4.864	2.106	-	-	-	-	-
BeSe	5.138	2.224	-	-	-	-	-
BeTe	5.617	2.432	-	-	-	-	-
CdS	5.835	2.527	4.137	6.714	1.623	1.005	2.528
CdSe	6.050	2.620	4.30	7.013	1.631	1.006	2.63
CdTe	6.478	2.805	4.572	7.484	1.637		2.802
HgS	5.872	2.543	-		-	-	-
HgSe	6.085	2.635	-	-	-	-	-
HgTe	6.460	2.797	-	-	-	-	-
MgS	5.620	2.434	-	-	-	-	-
MgSe	5.890	2.550	-	-	-	-	-
MgTe	6.280	2.719	-	-	-		-
ZnO	-	-	3.253	5.213	1.603	1.008	1.980
ZnS	5.406	2.341	3.811	6.235	1.636	-	2.335
ZnSe	5.668	2.454	4.003	6.540	1.634	-	2.453
ZnTe	6.103	2.643	4.310	7.090	1.645	-	2.646
Si	5.431	2.352	3.80	6.281	1.653		2.34
Ge	5.657	2.450	-	-	-	-	-
α-Sn	6.489	2.810	-	-	-	-	-
AlAs	5.639	2.442	-	-	-	-	-
GaAs	5.653	2.448	-	-	-	-	-
GaN	4.515	1.955	3.186	5.178	1.625	-	-
GaP	5.447	2.359	-	-	-	-	-
GaSb	6.094	2.638					
InAs	6.058	2.623	4.274	7.001	1.638	-	2.620
InN			3.562	5.899	1.656	-	2.192
InP	5.869	2.541	-	-	-	-	-
InSb	6.479	2.805	-	-	-	-	-

Table 1. Crystal structural properties. Lattice parameters a, c, c/a, bond length d, and bond ratio γ . All dimensions in Å.

Compound	$E_g(0)$ (eV)	α (meV/K)	β (K)	Ref.
h-CdS	$2.588 \pm .001$	0.386	103	
c-CdSe	1.772±0.005	0.37 ± 0.03	150±40	
c-CdSe	$1.766 \pm .003$	0.696	281	
h-CdSe	$1.834 \pm .003$.424± .02	118 ± 40	
c-CdTe	$1.602 \pm .004$	$0.46 \pm .07$	160.1	
c-ZnS	3.8440	0.632	254	
c-ZnS	3.842±0.003	0.88 ± 0.05	460±40	
c-ZnSe	2.8271	0.558	187	
c-ZnSe	2.825±0.002	0.67 ± 0.05	270±90	
c-ZnSe	2.820 ± 0.005	0.73 ± 0.04	295 ± 35	
c-ZnTe	2.3960	0.549	159	
c-ZnTe	2.394	0.63	210	
		1 . 1 1	1	

Table 2. Varshni Parameters for the modeling of $E_{\rho}(T)$

Table 3. Parameters for the modeling of $E_g(T)$ following VLC

Compound	$E_g(0)$ (eV)	$E_B(\mathrm{eV})$	Θ(K)	REF.	
h-CdSe	1.849 ± 0.003	0.036 ± 0.005	179 ± 40		
c-ZnS	3.8393	0.0733	272		
c-ZnSe	2.8243	0.0516	209		
c-ZnSe	2.800 ± 0.005	0.073 ± 0.004	260 ± 10		
c-ZnTe	2.3937	0.0375	163		
		1 . 1 1			

c=cubic, h=hexagonal.

Table 4. Parameters for the modeling of $E_g(T)$ following OC

COMPOUND	$E_g(0) (\mathrm{eV})$	S	$\langle \hbar \omega angle$, MeV	REF.
c-CdSe	1.764	2.83	18.9	
c-CdTe	1.608	1.68	5.8	
c-ZnS	3.836	2.82	16.1	
c-ZnSe	2.818	3.12	15.1	
c-ZnTe	2.390	2.29	10.8	
h-CdS	2.568	1.54	13.9	
h-CdSe	1.849	2.94	25.4	
h-ZnS	3.929	4.3	17.1	

c=cubic, h=hexagonal

Tables from: I. Hernández.Calderón, "Optical properties and electronic structure of wide band gap II-VI semiconductors", in *II-VI Semiconductor Materials and their Applications*, Taylor and Francis New York, 113–170 (2002).

c=cubic, h=hexagonal

	Low ter	nperature		Room temperature		
Compound	<i>Eg</i> (eV)	T (K)	Ref.	Eg (eV)	T (K)	Ref.
BeS	2.75i*, 5.51d*	0				
BeSe	2.39i*, 4.72d*	0		5.15d	300	
ВеТе	1.80i*, 3.68d*	0		2.8i	300	
CdS				2.48	297	
				2.50	297	
				2.45	297	
				2.42	297	
CdSe	1.75	10		1.66	297	
	1.765	9		$1.655 \pm .005$	297	
	1.78	5		1.692	300	
				1.74	297	
CdTe	1.6063	1.64		$1.509 \pm .005$	297	
	1.598	5		1.509	300	
	1.608	0		$1.511 \pm .008$	300	
				$1.509 \pm .002$	300	
MgS				4.45±.02	297	
MgSe				3.59	297	
				4.0	300	
MgTe				3.5	300	
				3.49	300	
ZnS	$3.841 \pm .001$	0		$3.741 \pm .004$	300	
	3.78	19		3.68	295	
	3.85	19		3.74	295	
	384	4.2		$3.723 \pm .001$	297	
ZnSe	$2.8252 \pm .0004$	0		$2.722 \pm .003$	300	
	2.821	9		2.70	295	
	$2.8237 \pm .0005$	12		$2.704 \pm .001$	297	
	2.820	5		2.730	300	
	2.82	10		2.69	297	
	$2.8201 \pm .0004$	1.6		2.70	300	
ZnTe	$2.3944 \pm .0004$	0		$2.290 \pm .002$	300	
	$2.3941 \pm .0004$	1.6		2.28	2.93	
	2.392	5		2.250	300	
	$2.392 \pm .001$	12		$2.271 \pm .003$	300	
α-Sn	0					
Ge	0.785	0		0.664	291	
Si	1.171			1.12421	300	
GaAs	1.52	4.5		$1.415 \pm .001$	300	
InAs	0.418	4.2		0.354	295	
InP	1.4236	1.6		1.344	300	
InSb	0.2368	2		0.169	300	

Table 5. Data collection of the band gap of zincblende wide band gap II-VI semiconductors.

*= theory, *i*=indirect gap, *d*=direct gap

	Lo	w temperatu	ire	Roo	om temperat	ure
Compound	$E_{g}(eV)$	T (K)	Ref.	$E_g(eV)$	T (K)	Ref.
h-CdS	2.5827	1.2		2.485	300	
	2.596	0				
h-CdSe	1.849	0		1.756	300	
	1.829	80		1.751	293	
h-ZnO	3.4376	1.6		3.37	297	
h-ZnS	3.929	0		3.772	300	
	3.9107			3.76	300	
	3.903*	4.2				
h-ZnSe	2.874	4.2		2.834	300	

Table 6. E_A transitions of wurzite wide band gap II-VI semiconductors.

Zincblende	<i>a</i> (RT) (Å)	$E_{\theta}(LT)$	$E_{\theta}(\mathrm{RT})$	∧C	
				Δ_0	
BeS	4.864	2.75i*			
BeSe	5.137	2.39i*	5.1		
ВеТе	5.617	1.80i*	2.8i		
CdS	5.835		2.48	0.07	
CdSe	6.050	1.77	1.66	0.42	
CdTe	6.478	1.60	1.51	0.91	
MgS	5.620		4.45		
MgSe	5.890		4.0		
MgTe	6.280		3.5		
ZnS	5.406	3.84	3.74	0.067	
ZnSe	5.668	2.82	2.70	0.42	
ZnTe	6.103	2.39	2.29	0.97	
Wurzite	a (RT)	$E_{\theta}(LT)$	$E_{\theta}(\mathrm{RT})$	$\Lambda^H - \mathbf{F} = \mathbf{F}$	E_A - E_B
	c (RT)			$\Delta_0 - \mathbf{L}_B - \mathbf{L}_C$	
h-CdS	4.137	2.59	2.49	0.063	0.016
	6.714				
h-CdSe	4.300	1.85	1.76	0.405	0.026
	7.013				
h-ZnO	3.253	3.44	3.37	0.039	0.003
	5.213				
h-ZnS	3.811	3.91	3.77	0.088	.029
	6.235				
h-ZnSe	4.003	2.87	2.83		

Table 7. Reference values for the lattice constant (*a*, *c*), E_0 and Δ_0 values for wide band gap II-VI semiconductors. E_A (= E_0), E_B , and E_C refer to wurzite crystals. All energy values in eV.

*= theory, *i*=indirect gap

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CdSe 6.67 4.63 -3.664 -0.8 CdTe 5.351 3.681 -4.52^+ -1.1^+ ZnS 1.067 0.666 -4.0 -0.62 ZnSe 8.52 5.17 -4.53 -1.14 ZnTe 7.13 4.07 -5.8 -1.8 BeS 1.84^+ 0.75^+ BeSe 1.49^+ 0.59^+ BeTe 1.11^+ 0.43^+ -0.43^+ -0.62	Compound	$c_{11}(10^{10}\mathrm{Pa})$	$c_{12} (10^{10}\mathrm{Pa})$	Ref.	<i>a</i> (eV)	<i>b</i> (eV)	Ref.
CdTe 5.351 3.681 -4.52^+ -1.1^+ ZnS 1.067 0.666 -4.0 -0.62 ZnSe 8.52 5.17 -4.53 -1.14 ZnTe 7.13 4.07 -5.8 -1.8 BeS 1.84^+ 0.75^+ BeSe 1.49^+ 0.59^+ BeTe 1.11^+ 0.43^+ -0.43^+ -0.43^+	CdSe	6.67	4.63		-3.664	-0.8	
ZnS 1.067 0.666 -4.0 -0.62 ZnSe 8.52 5.17 -4.53 -1.14 ZnTe 7.13 4.07 -5.8 -1.8 BeS 1.84^+ 0.75^+ BeSe 1.49^+ 0.59^+ BeTe 1.11^+ 0.43^+ -0.43^+ -0.62	CdTe	5.351	3.681		-4.52^{+}	-1.1+	
ZnSe 8.52 5.17 -4.53 -1.14 ZnTe 7.13 4.07 -5.8 -1.8 BeS 1.84^+ 0.75^+ -5.8 -1.8 BeSe 1.49^+ 0.59^+ -5.8 -1.8 BeTe 1.11^+ 0.43^+ -1.8	ZnS	1.067	0.666		-4.0	-0.62	
ZnTe7.134.07-5.8-1.8BeS 1.84^+ 0.75^+ -1.8BeSe 1.49^+ 0.59^+ -1.11^+BeTe 1.11^+ 0.43^+	ZnSe	8.52	5.17		-4.53	-1.14	
BeS 1.84^+ 0.75^+ BeSe 1.49^+ 0.59^+ BeTe 1.11^+ 0.43^+	ZnTe	7.13	4.07		-5.8	-1.8	
BeSe 1.49^+ 0.59^+ BeTe 1.11^+ 0.43^+	BeS	1.84^{+}	0.75^{+}				
BeTe 1.11^+ 0.43^+	BeSe	1.49^{+}	0.59^{+}				
	ВеТе	1.11^{+}	0.43^{+}				
GaAs 11.9 5.38 -8.93 -1.76	GaAs	11.9	5.38		-8.93	-1.76	

Table 8. Elastic stiffness constants and deformation potential of zincblende II-VI wide band gap semiconductors.

*the elastic stiffness constants are the average of the values given in Refs. _____. ⁺theoretical calculations.

System	$\mathcal{E}(10^{-2})$	ΔE_{HH} (meV)	ΔE_{LH} (meV)	ΔE_{SO} (meV)
CdSe/GaAs	6.6	21.7	325	94.5
CdTe/GaAs	12.7	38.8	8.6	213
ZnS/GaAs	- 4.6	- 73.7	-112.6	-225.8
ZnSe/GaAs	0.265	2.75	16.3	9.2
ZnTe/GaAs	7.37	82.8	769	249

Table 9. Calculated values for the shift of optical transitions at Γ of pseudomorphic heterostructures of II-VI semiconductors on GaAs(100).

Ternary	b (eV)	Ref.	\boldsymbol{b}_{av}
BeZnSe	$pprox 0^{a}$		
CdSeTe	0.755, 0.87		0.83
CdSSe	0.53, 0.54		0.54
CdSTe	1.84, 1.73, 1.74		1.77
CdZnS	$0.6^{b}, 0.3$		0.45
CdZnSe	0.30, 0.35, 0.35		0.33
CdZnTe	0.153 ^c , 0.33, 0.342, 0.463		0.32
MgZnSe	0.4, 0.47		0.44
MgZnTe	0.69		0.69
ZnSeTe	1.28, 1.7, 1.35, 1.23, 1.251		1.36
ZnSSe	0.56, 0.63, 0.456. 0.68, 0.510		0.57
ZnSTe	2.4, 2.7, 3.0		2.7

Table 10. Bowing parameters for $E_g(x)$ of II-VI wide band gap ternary zincblende alloys. b_{av} refers to the average of the given values.

a: low berylium (x < 0.4) content, b: not a homogeneous cubic sample. c: average of 12 and 300 K values.

	Experimental	[Theory		Materia	ıl paramet	ers
	$E_1 ({\rm meV})$	Ref.	X (eV)	$E_1 ({\rm meV})$	$a_H(\text{\AA})$	m_e/m_0	m_{hh}/m_0	\mathcal{E}_0
CdS				16.9	45.3	0.14	0.51	9.4*
CdSe	15			13.0	57.5	0.11	0.45	9.6
CdTe	11		1.595 - 1.597	10.4	70.6	0.09	0.40	9.8
ZnS	38 ± 1		3.80 - 3.82	37.8	22.4	0.34	0.49*	8.5
ZnSe	20.0 ± 0.3		2.800 - 2.804	20.1	41.1	0.145	0.49	8.7
ZnTe	12.8 ± 0.2		2.380 - 2.381	14.2	51.9	0.12	0.60	9.8
h-CdS	29 ± 1		2.551 - 2.553 ^A	26.7	28.7	0.23	0.7	9.4
h-CdSe	15		1.824 - 1.827	14.9	51.9	0.12	0.45	9.3
h-ZnO	59		3.376 - 3.378 ^A	42.5	21.7	0.28	0.59	7.8
h-ZnS	~ 40		3.79 - 3.81 ^A	41.1	28.5	0.28	0.49	9.6

Table 11. Experimental free exciton binding (E_l) and PL (X) transition energies, and calculated binding energies and modified Bohr radius of wide band gap II-VI semiconductors at the Γ point.

*parameter of the hexagonal structure. A: 1s exciton of A-band in hexagonal semiconductors.

	Donors		Accept	tors
Material	E_B^0 (meV)	$(D^{0}, X) (eV)$	E_B^0 (meV)	$(A^0, X) (eV)$
CdTe	0.6 - 2.9	1.593 - 1.596	6.1 - 7.8	1.588 - 1.591
ZnS	9 (I)	3.785 - 3.792	7 - 30	3.776 - 3.793
ZnSe	4.5 - 5.1 (Al)	2.797 - 2.798	9.4 -10.2 (Na)	2.788 - 2.793
	3.8 - 5 (Ga)	2.794 - 2.797	10.8 - 12 (Li)	2.790 - 2.792
	4.5 - 4.8 (Cl)	2.795 - 2.797	9 - 11 (N)	2.790 - 2.792
			4.9 - 5.2 (P)	2.796 - 2.798
			17 - 21 (Cu)	2.782 - 2.785
	5.5 (V _{Se})	2.7954	16.4 - 19.4 (V _{Zn})	2.780 - 2.784
ZnTe	3.4 - 6	2.372 - 2.376	4.5 - 12	2.367 - 2.374

Table 12. Bound exciton binding energies and their optical transitions in zincblende wide band gap II-VI semiconductors. Most of the values based on data of Ref. ____ and references therein.

Table from: I. Hernández.Calderón, "Optical properties and electronic structure of wide band gap II-VI semiconductors", in *II-VI Semiconductor Materials and their Applications*, Taylor and Francis New York, 113–170 (2002).

	Al	Cl	Ga	In
1s - 2s	18.84 - 18.91	19.32 - 19.36	20.16 - 20.22	20.89 - 20.92
1s - 2p	18.96 - 19.16	19.64 - 19.71	20.71 - 21.1	21.65 - 21.75
1s - 3s	22.59		24.13 - 24.18	25.03
1s - 3p	22.75		24.33 - 24.7	25.32

Table 13. Donor excitation energies in ZnSe from Refs. ____ and references therein. Energies in meV.

Table from: I. Hernández.Calderón, "Optical properties and electronic structure of wide band gap II-VI semiconductors", in *II-VI Semiconductor Materials and their Applications*, Taylor and Francis New York, 113–170 (2002).